Углеродные нанокластеры в электрическом поле: строение, размерные эффекты, электронные свойства, работа выхода

Глухова Ольга Евгеньевна

доцент кафедры радиотехники и электродинамики Саратовского госуниверситета им. Н.Г.Чернышевского

glukhovaoe@info.sgu.ru

Квантово-химический метод ЛКАО, адаптированный для изучения углеродных нанокластеров и нанокластеров, содержащих связи типа *C-N* и/или *Si-C*.

Состояние электрона описывается волновой функцией $\psi(\mathbf{r})$. Собственные значения энергии электрона *E* Оператор Гамильтона определяется выражением определяются как решения стационарного уравнения Шредингера

$$H\psi(\mathbf{r}) = E\psi(\mathbf{r}).$$

Одноэлектронная волновая функция в кластере $C_n -$ линейная комбинация волновых функций валентных Здесь N – количество ядер, $Z_I -$ заряд остова электронов $|s\rangle$, $|p_x\rangle$, $|p_y\rangle$, $|p_z\rangle$ всех атомов: атома с номером I, выраженный в единицах заряда

$$|\psi\rangle = \sum_{i=1}^{n} c_{i} |s_{i}\rangle + \sum_{i=n+1}^{2n} c_{i} |p_{xi}\rangle + \sum_{i=2n+1}^{3n} c_{i} |p_{yi}\rangle + \sum_{i=3n+1}^{4n} c_{i} |p_{zi}\rangle$$

где n – количество атомов, с₁..с_{4n} – весовые коэффициенты.

$$H = \sum_{i=1}^{n_e} \left[-\frac{\hbar^2}{2m_e} \Delta_i + \sum_{l=1}^{N} \frac{Z_l e^2}{4\pi\epsilon_0 |\mathbf{r}_i - \mathbf{R}_l|} + V(\mathbf{r}_i) \right].$$

Здесь N – количество ядер, Z_I – заряд остова атома с номером I, выраженный в единицах заряда протона, \mathbf{R}_I – радиус-вектор ядра атома с номером I, n_e – количество электронов в системе, е – заряд электрона, \mathbf{r}_i – радиус-вектор электрона с номером i, m_e – масса электрона, \hbar – постоянная Планка, ε_0 – электрическая постоянная. Среднее, или ожидаемое, значение энергии электрона (где і принимает значения от 1 до 4n):

Минимизацией правой части по коэффициентам с^{*}_i получается наименьшее значение энергии, соответствующее основному состоянию системы. В итоге – система уравнений

$$\frac{\langle \psi \mid H \mid \psi \rangle}{\langle \psi \mid \psi \rangle} = \frac{\sum_{i=1}^{4n} \sum_{j=1}^{4n} c_i^* c_j \langle \psi_i \mid H \mid \psi_j \rangle}{\sum_{i=1}^{4n} \sum_{j=1}^{4n} c_i^* c_j}$$

$$\sum_{j=1}^{4n} H_{1j} c_{j} = E c_{1}$$

$$\sum_{j=1}^{4n} H_{2j} c_{j} = E c_{2}$$

$$\sum_{j=1}^{4n} H_{3j} c_{j} = E c_{3}$$
...
$$\sum_{j=1}^{4n} H_{4n j} c_{j} = E c_{4n}$$

,

Энергия заполненных уровней электронного спектра, образованного собственными значениями гамильтониана – E_{bond} .

Полная энергия E_{tot} кластера рассчитывается как сумма:

$$E_{tot} = E_{rep} + E_{bond}$$
,

це Е_{гер} – феноменологическая энергия, учитывающая межэлектронное и межъядерное взаимодействия. рамках данного полуэмпирического метода Диагональные элементы гамильтониана суть атомные термы, а недиагональные элементы определяются выражением:

$$V_{\alpha\beta}(\mathbf{r}) = V_{\alpha\beta}^{0} \left(\frac{\mathbf{p}_{3}}{\mathbf{r}}\right)^{\mathbf{p}_{1}} \exp\left\{\mathbf{p}_{1} \left[-\left(\frac{\mathbf{r}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}} + \left(\frac{\mathbf{p}_{3}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}}\right]\right\},$$

где r – расстояние между атомами;

α – индекс, указывающий взаимодействующие орбитали (ss, sp или pp);

β-индекс, указывающий тип связи (σ или π).

Феноменологическая энергия представляется суммой парных отталкивательных потенциалов

$$E_{rep} = \sum_{i < j} V_{rep} \left(\left| r_i - r_j \right| \right),$$

где i, j – номера взаимодействующих атомов; r_i, r_j – декартовы координаты.

Функция V_{rep} рассчитывается по формуле:

$$V_{\text{rep}}(\mathbf{r}) = \mathbf{p}_5 \left(\frac{\mathbf{p}_3}{\mathbf{r}}\right)^{\mathbf{p}_6} \exp\left\{\mathbf{p}_6 \left[-\left(\frac{\mathbf{r}}{\mathbf{p}_2}\right)^{\mathbf{p}_4} + \left(\frac{\mathbf{p}_3}{\mathbf{p}_2}\right)^{\mathbf{p}_4}\right]\right\}.$$

Определен набор равновесных интегралов перекрытия $V_{ss\sigma}^0$, $V_{sp\sigma}^0$, $V_{pp\sigma}^0$, $V_{pp\pi}^0$, а также атомных термов углерода ε_s , ε_p и параметров рп (n=1..6) функций, описывающих энергию межатомного взаимодействия. Перечисленные параметры, позволяющие моделировать C-C связь нанокластера, будем называть характеристическими параметрами.

Характеристические параметры являются решением минимаксной задачи с ограничениями в следующей постановке:

$$\underset{\mathbf{A}}{\text{minmaxS}}(\mathbf{A}), \quad \text{где} \quad \mathbf{S}(\mathbf{A}) = \sum_{i=1}^{2} |\mathbf{r}_{i} - \mathbf{r}_{i}^{0}| + |\mathbf{IP} - \mathbf{IP}^{0}| + |\mathbf{E}_{g} - \mathbf{E}_{g}^{0}|$$

ХАРАКТЕРИСТИЧЕСКИЕ ПАРАМЕТРЫ ДЛЯ С-С СВЯЗИ

ε _s , эВ	ε _p , эВ	$V_{ss\sigma}^0$, $\Im B$	V ⁰ _{spσ} , ЭВ	V ⁰ _{ррσ} , ЭВ	$V_{pp\pi}^0$, $\Im B$
-10,932	-5,991	-4,344	3,969	5,457	-1,938
p_1	p ₂ , Å	p3, Å	p_4	p5, эВ	\mathbf{p}_6
2,796	2,32	1,54	22	10,92	4,455

АТОМНЫЕ ТЕРМЫ И НЕДИАГОНАЛЬНЫЕ МАТРИЧНЫЕ ЭЛЕМЕНТЫ ГАМИЛЬТОНИАНА (ЭВ)

Связь	ε _s	ε _p	$V_{ss\sigma}^0$	$V^0_{sp\sigma}$	$V^0_{pp\sigma}$	$V^0_{pp\pi}$
C-N	_	-7,2	0	0	5,1	-7,1
Si-C	-5,25	-0,811	-4,8	4,3	4,75	-2,6

ПАРАМЕТРЫ РN ФУНКЦИЙ ЭНЕРГИИ МЕЖАТОМНОГО ВЗАИМОДЕЙСТВИЯ

Связь	p_1	p ₂	p ₃	p_4	p ₅	p_6
C- N	3	2,32	1,54	22,9	4	8
Si-C	2,796	2,15	1,92	22	10,92	4,455

Решение тестовой задачи. Фуллерен С₆₀

Полная плотность электронных состояний фуллерена C₆₀ (а) и электронный спектр *π*-системы фуллерена C₆₀ (б)

1. G.F.Bertsch et al. // Phys.Rev.Lett.- 1991.-V.67.- N 19.- P.2690-2693.

2. Schmidt M.W. et al. // J. Comp. Chem. –1993.– V.14. – P.1347-1363; Beck R. D. et al. // Surface Review and Letters (SRL).–1996.–V.3.–N 1.– P.771-775; <u>Shirley</u> E.L. et al.// Phys. Rev. Lett.– 1993.– V. 71.– N 1.– P.133-136.

3[•] Copley J.R.D. et al. // Phys. Chem. Solids.-1992,- V. 53.- N 11.- P. 1353-1371; Wang Y. et al. // Phys. Rev. B.- 1992.- V. 45.- N 24.-P. 14396-14399; Сидоров Л.Н. // ФТТ- 2002.-T.44.- Вып.3.- С.401-405.

Некоторые характеристики	фуллерена	C_{60}
--------------------------	-----------	----------

Параметры	<i>Ab initio</i> ²	Эксперимент ³	Базовый метод
r ₁ , Å	1,45	$1,45 \pm 0,01$	1,45
r ₂ , Å	1,39	$1,40 \pm 0,01$	1,40
IP, эВ	7,58; 7,62	7,6	7,61
Е _g , эВ	2,15; 1,5	1,7÷2,35	2,0

Решение тестовой задачи. Фуллерен С₇₀

E_g, эВ

-

Таблица 1.3

Базовая

схема

1,45

1,42

1,43

1,45

1,40

1,45

1,40

1,45

7,29

1,29

Некоторые характеристики фуллерена $C_{70}(D_{5h})$

Трехпараметрический метод вычисления координат

Сегмент нанокластера, используемого для построения координат

В качестве продольной оси нанокластера выбрана ось Z. Координаты X и Y атомов вычисляются в виде: $X_k = R \cdot \cos \alpha_k$, $Y_k = R \cdot \sin \alpha_k$, где $R = n \cdot H_3/2\pi$ – радиус нанокластера, α – угол, соответствующий сегменту и номеру атома в сегменте (вычисляется по формулам, приведенным ниже), k = 1..4 – номер атома в сегменте.

Координата Z и угол α атомов сегмента вычисляются по следующим формулам:

$$\begin{split} & Z_1 = i \cdot \left(H_1 + H_2 \right), \qquad \alpha_1 = j \cdot \frac{2\pi}{n}, \\ & Z_2 = i \cdot \left(H_1 + H_2 \right) + \frac{H_1 - H_2}{2}, \ \alpha_2 = (j \cdot 2 - 1) \cdot \frac{\pi}{n}, \\ & Z_3 = \left(i + \frac{1}{2} \right) \cdot \left(H_1 + H_2 \right), \quad \alpha_3 = (j \cdot 2 - 1) \cdot \frac{\pi}{n}, \\ & Z_4 = i \cdot \left(H_1 + H_2 \right) + H_1, \qquad \alpha_4 = j \cdot \frac{2\pi}{n}, \end{split}$$

где i = 0..(M/2 - 1) – номер сегмента вдоль оси Z, j = 0..(n - 1) – номер сегмента по окружности.

Сегмент нанокластера, используемого для построения координат

Координаты Х и Ү атомов:

 $X_k = R \cdot \cos \alpha_k$, $Y_k = R \cdot \sin \alpha_k$, где $R = m \cdot (H_1 + H_2)/2\pi -$ радиус нанокластера, $\alpha -$ угол, соответствующий сегменту и номеру атома в сегменте (вычисляется по формулам, приведенным ниже), k = 1..4 – номер атома в сегменте.

Координата Z и угол α атомов сегмента вычисляются по следующим формулам:

$$Z_{1} = i \cdot H_{3}, (\pi 1.9) \quad \alpha_{1} = j \cdot \frac{2\pi}{m}, \quad Z_{2} = i \cdot H_{3},$$

$$\alpha_{2} = \left[j + \frac{H_{2}}{H_{1} + H_{2}}\right] \cdot \frac{2\pi}{m}, \quad Z_{3} = \left(i + \frac{1}{2}\right) \cdot H_{3},$$

$$\alpha_{3} = \left[j - \frac{H_{1} - H_{2}}{2 \cdot (H_{1} + H_{2})}\right] \cdot \frac{2\pi}{m}, \quad Z_{4} = \left(i + \frac{1}{2}\right) \cdot H_{3},$$

$$\alpha_{4} = \left[j + \frac{H_{2}}{H_{1} + H_{2}} - \frac{H_{1} - H_{2}}{2 \cdot (H_{1} + H_{2})}\right] \cdot \frac{2\pi}{m},$$

где i = 0..(N/2 - 1) – номер сегмента вдоль оси Z, j = 0..(m - 1) – номер сегмента по окружности.

Методика изучения нанокластеров в электрическом поле

В рамках применяемой квантовой модели гамильтониан, модифицируется введением дополнительного слагаемого, учитывающего величину "диполя на связях".

Положение центра тяжести плотности электронов, участвующих в связи, относительно точки, расположенной на середине расстояния между атомами, определяется векторной величиной

$$\langle \psi(\mathbf{r}) | \mathbf{r} | \psi(\mathbf{r}) \rangle$$
, (5.3)

где $\psi(\mathbf{r})$ – волновая функция электрона, зависящая от координат.

Изменение энергии электронов под действием поля **F** определяется выражением:

С появлением внешнего поля напряженностью F матричные элементы определяются следующим выражением:

$$V_{\alpha\beta}(\mathbf{r}) = V_{\alpha\beta}^{0} \left(\frac{\mathbf{p}_{3}}{\mathbf{r}}\right)^{\mathbf{p}_{1}} \exp\left\{p_{1}\left[-\left(\frac{\mathbf{r}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}} + \left(\frac{\mathbf{p}_{3}}{\mathbf{p}_{2}}\right)^{\mathbf{p}_{4}}\right]\right\} + \left(-\left(-\mathbf{e}\right)\mathbf{F} \cdot \left\langle \psi_{i} \left| \mathbf{r} \right| \psi_{j} \right\rangle\right)$$
(5.5)

где r – расстояние между атомами; α – индекс, указывающий взаимодействующие орбитали (ss, sp, pp) ; β – индекс, указывающий тип связи (σ или π); i, j – типы орбиталей.

$$-(-e)\mathbf{F}\cdot\langle\psi(\mathbf{r})|\mathbf{r}|\psi(\mathbf{r})\rangle$$
. (5.4) Выражение $-e\cdot\langle\psi_i|\mathbf{r}|\psi_j\rangle$ определяет вектор дипольного момента на связи.

Для данного состояния с энергией *E*_k и волновой | Таким образом, для данного квантового состояния функцией ψ_k заряд распределяется по *n* атомам углеродного нанокластера следующим образом:

$$Q_{MO}^{k} = e \cdot \left(\sum_{i=1}^{n} c_{i}^{2}(s_{i}) + \sum_{i=n+1}^{2n} c_{i}^{2}(p_{xi}) + \sum_{i=2n+1}^{3n} c_{i}^{2}(p_{yi}) + \sum_{i=3n+1}^{4n} c_{i}^{2}(p_{zi}) \right) \cdot n_{e_{xi}}$$

n_e – число электронов на молекулярной орбитали (MO). По условиям нормировки сумма квадратов весовых коэффициентов всех атомных орбиталей, реализующих данное состояние, равна единице. Величина, подобная $e \cdot c_i^2(p_{xi}) \cdot n_e$, – заряд, приходящийся на *р*_{*xi*}-атомную орбиталь, соответственно.

углеродного нанокластера диполь на связи, к примеру $p_{xi} - p_{yj}$ (*i*, *j* – номера взаимодействующих атомов), вычисляется по формуле:

$$\boldsymbol{p}_{ij} = \boldsymbol{e} \cdot \left(c_i^2(\boldsymbol{p}_{xi}) \cdot \boldsymbol{r}_i + c_j^2(\boldsymbol{p}_{yj}) \cdot \boldsymbol{r}_j \right) \cdot \boldsymbol{n}_e$$

где r_i, r_j – радиус-векторы атомов с номерами *i* и *j*. Равновесное состояние диполя на связи при наличии электрического поля определяется в результате минимизации полной энергии нанокластера, которая складывается из энергии заполненных электронных уровней феноменологической И энергии, учитывающей межъядерное, межэлектронное И обменно-корреляционное взаимодействия.

Во внешнем электрическом поле дипольный момент и дипольный момент вычисляем виде В геометрической суммы [9]: напряженность связаны соотношением:

$$= \mathbf{e} \cdot \sum_{\mathbf{I}} Z_{\mathbf{I}} \mathbf{R}_{\mathbf{I}} - \mathbf{e} \cdot \sum_{i} \mathbf{r}_{i}$$

где r_i , R_I – радиус-векторы электрона и ядра атома, *Z*_{*I*} – эффективный заряд ядра атома, соответствующий абсолютной величине суммарному ПО заряду валентных электронов.

μ

 $\mu = \varepsilon_0 \alpha \mathbf{F}$

где ε_0 – электрическая постоянная, α – тензор поляризуемости (для тубулярных нанокластеров).

У сфероподобных молекул, как фуллерен С₆₀, поляризуемость не зависит от направления и равна кубу радиуса – 0,045 нм³.

Расчет:

В случае поля с F = 3 В/нм получены следующие результаты: IP=7,58 эВ, $E_g = 2,03$ эВ, $\alpha = 45,7$ Å³.

Альтернативные расчеты отдельных компонентов тензора поляризуемости¹¹ трубки (4,4) $\alpha_{xx} = 26 \text{ Å}^2$.

11. Benedict L.X. // Phys.Rew.B.- 1995.-V.52.- N 11.-P.8541(9). Тензор поляризуемости тубулярного кластера (F = 3 B/нм)

Тараметры	$\begin{pmatrix} \alpha_{xx} & \alpha_{xy} & \alpha_{xz} \\ \alpha_{yx} & \alpha_{yy} & \alpha_{yz} \\ \alpha_{zx} & \alpha_{zy} & \alpha_{zz} \end{pmatrix}, \mathring{A}^{2}$	$\mu \ (\mu_x, \mu_y, \mu_z) \cdot 10^{30},$ Кл·м $F_z = 3 \ B/нм$
(3,3)	$ \begin{pmatrix} 13 & 3 & 0,5 \\ 3 & 13 & 1,5 \\ 24 & 24 & 130 \end{pmatrix} $	57,27 (48,85; 5,10; 56,83) L = 21,06 Å
(4,4)	$ \begin{pmatrix} 25 & 2,6 & 4,2 \\ 2,6 & 25 & 1,7 \\ 65 & 65 & 54 \end{pmatrix} $	60,44 (-0,55; -1,65; 60,42) L = 34,44 Å

Программно вычислительный комплекс (ПВК) RING, в котором предусмотрено также:

- вычисление координат с помощью теории групп точечной симметрии,

- модификация структуры путем растяжения (сжатия), изгиба и кручения,

оптимизация геометрии каркаса полной нанокластера путем минимизации энергии по заданным линейным параметрам (с помощью метода Хука-Дживса),

– расчет плотности электронных состояний, объемной плотности распределения электронного заряда по атомам, дипольного момента структуры и др.

ПВК RING позволяет исследовать УTH. дорогостоящий заменяя, в ряде случаев, эксперимент.

<

Авторы: О.А.Терентьев, О.Е.Глухова

RING

Влияние электрического поля

на атомную структуру нанокластеров Геометрические параметры тубулярных

FzFx

		наноклас	теров	
	F	(5,5)	(4,4)	(3,3)
	$(F_x, F_y, F_z),$	180	144	108
	В/нм	атомов	атома	атомов
L, Å		20,81	20,83	20,79
D, Å		6,87	5,50	4,19
H ₁ ,Å	0	2,813	2,92	2,945
H ₂ ,Å		1,408	1,42	1,441
H ₃ ,Å		2,448	2,45	2,446
$\Delta D / D$		0,2 %	0,2 %	0,2 %
$\Delta L / L$		-0,6 %	-0,6 %	-0,7 %
H ₁ ,Å	3 (0;3;0)	2,812	2,822	2,823
H ₂ ,Å		1,406	1,409	1,412
H ₃ ,Å		2,450	2,442	2,441
$\Delta D/D$		-0,4 %	-0,4 %	-0,5%
$\Delta L / L$		1,2 %	1,40 %	1,52%
H ₁ ,Å		2,852	2,851	2,856
H ₂ ,Å	3 (0;0;3)	1,410	1,407	1,409
H ₃ ,Å		2,478	2,442	2,484

Известно, что пондеромоторная сила P, действующая на углеродную нанотрубку, закрытую с одного конца фуллереновой шапочкой, равна0,054 нН для трубки длиной 100 нм, D > 25 нм в поле $F_z = 4,6$ В/нм.

Здесь вычисляется пондеромоторная сила P_1 электростатического поля, действующая на единицу площади открытого конца трубки, при помощи известного значения модуля Юнга Yнанотрубки

$$P_1 = Y \frac{\Delta L}{L}$$

где $\Delta L/L$ - относительное удлинение тубуса.

Модули Юнга кресельных трубок были рассчитаны ранее при помощи модифицированного метода ЛКАО.

Геометрические параметры тубулярных

нанокластеров						
$F_z = 3 B/HM$	(5,5) 180	(4,4) 144	(3,3) 108			
L	атомов	атома	атомов			
Fp1, нН	6,6	6,0	4,7			
Fp ₁ , нН/атом	0,037	0,042	0,044			
$\Delta L/L$, %	1,22	1,43	1,55			

Изменение параметров упругости нанокластеров

кресло с увеличением диаметра

N	(m,n)	d, Å	Ү, ТПа	Ү _р , ТПа ∙нм	μ
120	(3,3)	4,18	0,68	0,23	0,44
160	(4,4)	5,51	0,72	0,24	0,44
200	(5,5)	6,85	0,74	0,25	0,45
240	(6,6)	8,19	0,75	0,25	0,45
280	(7,7)	9,54	0,76	0,26	0,45

Влияние электрического поля на электронную структуру. Размерные эффекты

Распределение заряда

Распределение заряда валентных электронов по атомам вдоль оси тубуса нанокластера (3,3): вне и в электростатическом поле

длиной 20,8 A в продольном пространственнооднородном электростатическом поле напряженностью 3 В/м

Плотность электронных состояний нанокластера (5,5) длиной 20,8 Å в продольном электростатическом пространственно-однородном поле напряженностью 3 В/м

Размерные эффекты нанотрубок в отсутствие электрического поля

Изменение потенциала ионизации нанокластера кресло с длиной (при фиксированном диаметре)

Зависимость потенциала ионизации тубулярных нанокластеров (m,m) – *кресло*, от длины атомного каркаса при наращивании каркаса слоями: a) для УТН с числом m кратным трем, б) для УТН с прочими числами m

Распределение заряда валентных электронов по атомам вдоль оси симметрии тубуса у нанокластеров С₈₀ и С₉₀ (*e* – абсолютная величина заряда электрона)

Потенциал ионизации нанотрубок в электрическом поле

Работа выхода нанотрубок в отсутствие и во внешнем пространственно-однородном электрическом поле

Графеновые ленты

Сворачивание графеновой полосы в тубус

Работа выхода тубулярных нанокластеров

			Метод
Тип	Диаметр,	Базовый	функционала
трубки	Å	метод	плотности*,
			ab initio**
(3,3)	4,10	4,43	4,5**
(4,4)	5,52	4,5	4,55**
(5,5)	6,84	4,52	4,6** ; 4,68*
(6,6)	8,36	4,5	4,71*; 4,86
(12,12)	16,30	4,5	4,66**; 4,77*
графит	∞	-	4,66**; 4,91*
(4,0)	3,34	5,25	5,95**
(5,0)	4,14	4,97	5,28**
(6,0)	4,84	4,63	4,90**
(7,0)	5,66	4,83	5,10**; 5,45*
(8,0)	6,42	4,85	4,80**
(9,0)	7,20	4,73	4,6**
(10,0)	8,00	4,81	4,66**; 5,25*
(12,0)	9,52	4,77	4,66**;4,73*

Результаты расчета работы выхода

* Zhao J.//Phys.Rew.B.-2002.-V.65.-N.19.-P. 193401(4). ** Shan B.//Phys. Rew. Lett.-2005.-V.94.-N23.-P. 236602

Эксперимент:

для пучков нанотрубок – [4,8; 5,1] эВ; для индивидуальных трубок – 3,7 эВ; 4,5-5,0 эВ Sun J.P., Zhang Z.X., Hou S.M. et al.// Appl. Phys.A: Mater.

Sun J.P., Znang Z.A., Hou S.M. et al.// Appl. Phys.A: Mater Sci. Process.–2002.–V.75.–P.479-481.

Потенциал ионизации тубулярных нанокластеров длиной ~100 Å и индивидуального графитового листа (параметр N=9, протяженность края вида *кресло* – ~100 Å)

Энергетические и эмиссионные параметры тубулярных нанокластеров

Параметры	F	(5,5)	(4,4)	(3,3)
	(F _x , F _y , F _z), В/нм			
IP, эВ		6,20	6,21	6,26
Eg, эB	0	0,21	0,13	0,08
φ, ЭΒ		4,52	4,5	4,43
ІР, эВ		6,20	6,25	6,26
Eg, эB	3 (0;3;0)	0,21	0,19	0,09
φ, ЭΒ		4,7	4,68	4,69
Δφ, ЭΒ		0,22	0,18	0,26
IP, эB		6,12	6,16	6,21
Eg, əB		0,09	0,08	0,23
φ, ЭΒ	3 (0;0;3)	4,41	3,95	3,88
Δφ, ЭΒ		-0,39	-0,45	-0,52

Зависимости относительной величины работы выхода φ_F / φ_0 (φ_0 – работа выхода вне поля, φ_F – в поле с напряженностью F) УТН (3,3), (4,4), (5,5) от напряженности электростатического поля.

Спасибо за внимание!